Context-aware taxi demand hotspots prediction
نویسندگان
چکیده
In an urban area, the demand for taxis is not always matched up with the supply. This paper proposes mining historical data to predict demand distributions with respect to contexts of time, weather, and taxi location. The four-step process consists of data filtering, clustering, semantic annotation, and hotness calculation. The results of three clustering algorithms are compared and demonstrated in a web mash-up application to show that context-aware demand prediction can help improve the management of taxi fleets.
منابع مشابه
iTaxi: Context-Aware Taxi Demand Hotspots Prediction Using Ontology and Data Mining Approaches
It has been estimated that over 60 thousand licensed taxis in the Great Taipei area are not occupied over 70 percent of driving time on average. However, the taxi company, TaiwanTaxi, indicates that even in rush hour, there are customers whose requests are not satisfied. The demand and supply are not paired, causing not only customers wait too long for a cab, but also taxi drivers waste time an...
متن کاملForecasting short-term taxi demand using boosting-GCRF
It will be most efficient to frame operation strategies before actual taxi demand is revealed. But this is challenging due to limited knowledge of the taxi demand distribution in immediate future and is more prone to prediction errors. In this study, we develop the boosting Gaussian conditional random field (boosting-GCRF) model to accurately forecast the short-term taxi demand distribution usi...
متن کاملDeep Multi-View Spatial-Temporal Network for Taxi Demand Prediction
Taxi demand prediction is an important building block to enabling intelligent transportation systems in a smart city. An accurate prediction model can help the city pre-allocate resources to meet travel demand and to reduce empty taxis on streets which waste energy and worsen the traffic congestion. With the increasing popularity of taxi requesting services such as Uber and Didi Chuxing (in Chi...
متن کاملReal-time Prediction of Taxi Demand Using Recurrent Neural Networks
Predicting taxi demand throughout a city can help to organize the taxi fleet and minimize the wait-time for passengers and drivers. In this paper, we propose a sequence learning model that can predict future taxi requests in each area of a city based on the recent demand and other relevant information. Remembering information from the past is critical here since taxi requests in the future are ...
متن کاملOn Predicting the Taxi-Passenger Demand: A Real-Time Approach
Informed driving is becoming a key feature to increase the sustainability of taxi companies. Some recent works are exploring the data broadcasted by each vehicle to provide live information for decision making. In this paper, we propose a method to employ a learning model based on historical GPS data in a real-time environment. Our goal is to predict the spatiotemporal distribution of the Taxi-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJBIDM
دوره 5 شماره
صفحات -
تاریخ انتشار 2010